ADVANTAGES OF IMPLEMENTING SMART GRID

WHY IMPLEMENT SMART GRID NOW?

Since about 2005, there has been increasing interest in the Smart Grid. The recognition that ICT offers significant opportunities to modernise the operation of the electrical networks has coincided with an understanding that the power sector can only be de-carbonised at a realistic cost if it is monitored and controlled effectively. In addition, a number of more detailed reasons have now coincided to stimulate interest in the Smart Grid.

Ageing assets and lack of circuit capacity
In many parts of the world (for example, the USA and most countries in Europe), the power system expanded rapidly from the 1950s and the transmission and distribution equipment that was installed then is now beyond its design life and in need of replacement. The capital costs of like-for-like replacement will be very high and it is even questionable if the required power equipment manufacturing capacity and the skilled staff are now available.

The need to refurbish the transmission and distribution circuits is an obvious opportunity to innovate with new designs and operating practices. In many countries the overhead line circuits, needed to meet load growth or to connect renewable generation, have been delayed for up to 10 years due to difficulties in obtaining rights-of-way and environmental permits.

Therefore some of the existing power transmission and distribution lines are operating near their capacity and some renewable generation cannot be connected. This calls for more intelligent methods of increasing the power transfer capacity of circuits dynamically and rerouting the power flows through less loaded circuits.

Thermal constraints
Thermal constraints in existing transmission and distribution lines and equipment are the ultimate limit of their power transfer capability. When power equipment carries current in excess of its thermal rating, it becomes over-heated and its insulation deteriorates rapidly.

This leads to a reduction in the life of the equipment and an increasing incidence of faults. If an overhead line passes too much current, the conductor lengthens, the sag of the catenary increases, and the clearance to the ground is reduced.

Any reduction in the clearance of an overhead line to the ground has important consequences both for an increase in the number of faults but also as a danger to public safety. Thermal constraints depend on environmental conditions, that change through the year. Hence the use of dynamic ratings can increase circuit capacity at times.

Operational constraints
Any power system operates within prescribed voltage and frequency limits. If the voltage exceeds its upper limit, the insulation of components of the power system and consumer equipment may be damaged, leading to short-circuit faults. Too low a voltage may cause malfunctions of customer equipment and lead to excess current and tripping of some lines and generators.

The capacity of many traditional distribution circuits is limited by the variations in voltage that occur between times of maximum and minimum load and so the circuits are not loaded near to their thermal limits. Although reduced loading of the circuits leads to low losses, it requires greater capital investment.

Since about 1990, there has been a revival of interest in connecting generation to the distribution network. This distributed generation can cause over-voltages at times of light load, thus requiring the coordinated operation of the local generation, on-load tap changers and other equipment used to control voltage in distribution circuits.

The frequency of the power system is governed by the second-by-second balance of generation and demand. Any imbalance is reflected as a deviation in the frequency from 50 or 60 Hz or excessive flows in the tie lines between the control regions of very large power systems. System operators maintain the frequency within strict limits and when it varies, response and reserve services are called upon to bring the frequency back within its operating limits [1].

Under emergency conditions some loads are disconnected to maintain the stability of the system. Renewable energy generation (for example. wind power, solar PV power) has a varying output which cannot be predicted with certainty hours ahead. A large central fossil-fuelled generator may require 6 hours to start up from cold. Some generators on the system (for example, a large nuclear plant) may operate at a constant output for either technical or commercial reasons.

Thus maintaining the supply–demand balance and the system frequency within limits becomes difficult. Part-loaded generation ‘spinning reserve’ or energy storage can address this problem but with a consequent increase in cost. Therefore, power system operators increasingly are seeking frequency response and reserve services from the load demand.

It is thought that in future the electrification of domestic heating loads (to reduce emissions of CO2) and electric vehicle charging will lead to a greater capacity of flexible loads. This would help maintain network stability, reduce the requirement for reserve power from part-loaded generators and the need for network reinforcement.

Security of supply
Modern society requires an increasingly reliable electricity supply as more and more critical loads are connected. The traditional approach to improving reliability was to install additional redundant circuits, at considerable capital cost and environmental impact.

Other than disconnecting the faulty circuit, no action was required to maintain supply after a fault. A Smart Grid approach is to use intelligent post-fault reconfiguration so that after the (inevitable) faults in the power system, the supplies to customers are maintained but to avoid the expense of multiple circuits that may be only partly loaded for much of their lives. Fewer redundant circuits result in better utilisation of assets but higher electrical losses.

National initiatives
Many national governments are encouraging Smart Grid initiatives as a cost-effective way to modernise their power system infrastructure while enabling the integration of low-carbon energy resources. Development of the Smart Grid is also seen in many countries as an important economic/commercial opportunity to develop new products and services.

No comments:

Post a Comment